Since conventional in situ measurements of suspended sediments in the river system are labor-intensive and time-consuming, remote sensing approaches using multi- or hyper-spectral cameras have widely been applied to obtain high-resolution suspended sediment concentration (SSC) distributions in rivers and streams. However, in nature, the properties of heterogeneous sediment, such as the mineral content and particle size distribution, induce a strong variability in the optical images of the suspended sediments. For this reason, the robust estimation of the suspended sediment using the remote sensing technique is challenging due to the optical variability of the suspended sediment. Thus, it is necessary to deal with this variability of the optical images to improve the accuracy of remote sensing-based SSC measurements and extend them to the global estimator. In this study, a robust Machine Learning (ML) model for SSC estimation based on hyperspectral images was developed by considering the optical variability of the suspended sediment in water bodies. A series of field-scale tracer experiments were conducted in open channels with three different sediment types in order to obtain both the SSC using laser diffraction sensors and hyperspectral images using a UAV camera. The experimental results showed that the optical characteristics of SSC were critically heterogeneous due to the properties of the sediment. Using these experimental dataset, four explicit regression models and two implicit ML regression models were developed and compared to select an optimal estimator. Consequently, a Support Vector Regression (SVR) model using relevant spectral bands in a wide wavelength range yielded the most accurate results, with an R2 of 0.90 for the whole dataset. However, linear regression models, which could not consider various spectral bands and the nonlinear effect of the optical variability of SSC, were limited in their ability to retrieve SSC from hyperspectral images. Furthermore, the SVR model accurately reproduced the spatio-temporal SSC distributions in all study cases, including low-visibility suspended sediments, thus successfully resolved the optical variability of SSC with widely selected spectral bands from recursive feature elimination (RFE). The SVR model also successfully retrieved the SSC distribution in uncalibrated rivers. The results of this study demonstrated that the proposed ML regression models based on the hyperspectral imagery achieved a significant improvement in SSC estimation in terms of accuracy and global applicability.
논문-국외
2023.09.08 12:37
Measurement of suspended sediment concentration in open channel flows based on hyperspectral imagery from UAVs
조회 수 784 추천 수 0 댓글 0
논문명 | Measurement of suspended sediment concentration in open channel flows based on hyperspectral imagery from UAVs |
---|---|
저자명 | 권시윤, 신재현, 서일원 노효섭, 정성현, 유호준 |
학술지 | Advances in Water Resources |
게재연월 | 2022-01-01 |
권/호 | Vol. 159 |
발행기관 | ELSEVIER |
DOI | https://doi.org/10.1016/j.advwatres.2021.104076 |
번호 | 분류 | 제목 | 저자명 | 학술지 | 게재연월 |
---|---|---|---|---|---|
215 | 논문-국외 |
PERFORMANCE OF TEE DIFFUSERS IN SHALLOW WATER WITH CROSSFLOW
![]() |
서일원, 김홍식 유대영, 김동수 | Journal of Hydraulic Engineering | 2001-01-01 |
214 | 논문-국외 |
ARC RIVER - GEOTEMPORAL RIVER HYDRODYNAMIC DATA MODEL
![]() |
김동수 | 박사학위논문 | 2008-08-01 |
213 | 논문-국내 |
ADCP자료를 활용한 GIS기반 하천 네트워크에서 오염물질의 이송거동모델 개발
![]() |
김동수 | 대한토목학회논문집 | 2009-11-01 |
212 | 논문-국외 |
Digital catchment inception using community project components
![]() |
M. Muste, 김동수, N.Arnold, T. Whiteaker, C. Just, A.Kruger | Water Management | 2010-01-22 |
211 | 논문-국외 |
Uncertainty Estimation of the ADCP Velocity Measurements from the Movin...
![]() |
김동수, 류권규 | KSCE Journal of Civil Engineering | 2010-01-26 |
210 | 논문-국외 |
Near-Transducer Errors in ADCP Measurements: Experimental Findings
![]() |
M. Muste, 김동수, J. A. González-Castro | Journal of Hydraulic Engineering | 2010-05-01 |
209 | 학술기사 |
수리계측학 및 수리정보학의 현재와 미래
![]() |
김동수 | 물과미래 | 2010-07-01 |
208 | 논문-국외 |
Considerations on direct stream flow measurements using video imagery: ...
![]() |
Marian Muste, H-C. Ho, 김동수 | Journal of Hydro-Evironment Research | 2010-11-03 |
207 | 논문-국내 |
ADCP 자료의 공간평균을 이용한 평균유속장 산정에 대한 검증
![]() |
김동수 강부식 | 한국환경과학회지 | 2010-12-09 |
206 | 논문-국내 |
전자기파 기반의 하천계측기기를 활용한 다차원 하천정보화시스템 구축방안
![]() |
김동수, 강부식 | 한국산학기술학회논문지 | 2011-01-13 |
205 | 논문-국내 |
ADCP 계기 부근에서 발생하는 관측 오차의 실험 및 수치모의에 의한 고찰
![]() |
김동수, 강부식 | 한국산학기술학회논문지 | 2011-02-10 |
204 | 학술발표회-국내 |
CCTV를 이용한 하천 표면 유속 측정
![]() |
류권규, 김동수, 윤병만 | 한국수자원학회 학술발표회 | 2011-05-20 |
203 | 학술발표회-국내 |
다양한 최신 계측방식을 적용한 제주도 유출 비교 분석
![]() |
김동수, 양성기, 정우열, 류권규 | 한국수자원학회 학술발표회 | 2011-05-20 |
202 | 논문-국외 |
Assessment of longitudinal dispersion coefficients using Acoustic Doppl...
![]() |
김동수 | Journal of Hydro-Environment Research | 2011-06-23 |
201 | 학술발표회-국내 |
제주도 주요 기저유출유역의 수자원해석 연구
![]() |
강명수, 양성기, 김동수, 정우열 양원석, 이준호, 김용석 | 한국환경과학회 정기학술발표회 | 2011-11-04 |
200 | 학술발표회-국내 |
제주도 한천의 대표입경를 이용한 조도계수 산정
![]() |
이준호, 양성기, 김동수, 강보성 | 한국수자원학회 학술발표회 | 2012-05-18 |
199 | 학술발표회-국내 |
제주도 홍수유량 계측 및 저류지 홍수위 저감효과 분석
![]() |
김동수, 양성기, 류권규 강명수, 정우열, 이준호 | 한국수자원학회 학술발표회 | 2012-05-18 |
198 | 학술발표회-국내 |
제주도 중서귀수역 기저유출유역의 수자원해석
![]() |
강명수, 양성기, 김동수, 정우열 | 한국수자원학회 학술발표회 | 2012-05-18 |
197 | 학술발표회-국내 |
3차원 하천정보화시스템 구축을 위한 GIS 기반 Arc River 데이터 모델 개발
![]() |
김동수 | 한국수자원학회 학술발표회 | 2012-05-18 |
196 | 학술발표회-국내 |
ADCP 수심계측자료 활용 하상변동 및 저류량 계산 알고리즘 개발
![]() |
김동수 | 한국수자원학회 학술발표회 | 2012-05-18 |