Since conventional in situ measurements of suspended sediments in the river system are labor-intensive and time-consuming, remote sensing approaches using multi- or hyper-spectral cameras have widely been applied to obtain high-resolution suspended sediment concentration (SSC) distributions in rivers and streams. However, in nature, the properties of heterogeneous sediment, such as the mineral content and particle size distribution, induce a strong variability in the optical images of the suspended sediments. For this reason, the robust estimation of the suspended sediment using the remote sensing technique is challenging due to the optical variability of the suspended sediment. Thus, it is necessary to deal with this variability of the optical images to improve the accuracy of remote sensing-based SSC measurements and extend them to the global estimator. In this study, a robust Machine Learning (ML) model for SSC estimation based on hyperspectral images was developed by considering the optical variability of the suspended sediment in water bodies. A series of field-scale tracer experiments were conducted in open channels with three different sediment types in order to obtain both the SSC using laser diffraction sensors and hyperspectral images using a UAV camera. The experimental results showed that the optical characteristics of SSC were critically heterogeneous due to the properties of the sediment. Using these experimental dataset, four explicit regression models and two implicit ML regression models were developed and compared to select an optimal estimator. Consequently, a Support Vector Regression (SVR) model using relevant spectral bands in a wide wavelength range yielded the most accurate results, with an R2 of 0.90 for the whole dataset. However, linear regression models, which could not consider various spectral bands and the nonlinear effect of the optical variability of SSC, were limited in their ability to retrieve SSC from hyperspectral images. Furthermore, the SVR model accurately reproduced the spatio-temporal SSC distributions in all study cases, including low-visibility suspended sediments, thus successfully resolved the optical variability of SSC with widely selected spectral bands from recursive feature elimination (RFE). The SVR model also successfully retrieved the SSC distribution in uncalibrated rivers. The results of this study demonstrated that the proposed ML regression models based on the hyperspectral imagery achieved a significant improvement in SSC estimation in terms of accuracy and global applicability.
논문-국외
2023.09.08 12:37
Measurement of suspended sediment concentration in open channel flows based on hyperspectral imagery from UAVs
조회 수 782 추천 수 0 댓글 0
논문명 | Measurement of suspended sediment concentration in open channel flows based on hyperspectral imagery from UAVs |
---|---|
저자명 | 권시윤, 신재현, 서일원 노효섭, 정성현, 유호준 |
학술지 | Advances in Water Resources |
게재연월 | 2022-01-01 |
권/호 | Vol. 159 |
발행기관 | ELSEVIER |
DOI | https://doi.org/10.1016/j.advwatres.2021.104076 |
번호 | 분류 | 제목 | 저자명 | 학술지 | 게재연월 |
---|---|---|---|---|---|
135 | 학술발표회-국내 |
본류와 지류의 수온차에 의한 합류부 혼합 양상 분석
![]() |
안설하, 이창현, 김경동, 김동수, 류시완, 김영도 | 2022 한국수자원학회 학술발표회 | 2022-05-19 |
134 | 학술발표회-국내 |
남강-낙동강 합류부 대하천 규모 수리학적 혼합특성 연구
![]() |
최수인, 김동수, 손근수, 김영도, 류시완 | 2022 한국수자원학회 학술발표회 | 2022-05-19 |
133 | 학술발표회-국내 |
H-ADCP와 서포트벡터회귀를 이용한 실시간 하천 유사량 모니터링 방법
![]() |
노효섭, 손근수, 김동수, 박용성 | 2022 한국수자원학회 학술발표회 | 2022-05-19 |
132 | 학술발표회-국내 |
GUM 기반 ADCP 유량 측정불확도 산정을 위한 소프트웨어의 개발
![]() |
김종민, 김동수 | 2022 한국수자원학회 학술발표회 | 2022-05-19 |
131 | 논문-국외 | Insights into Flood Wave Propagation in Natural Streams as Captured wit... | Marian Muste, 김동수, 김경동 | water | 2022-04-24 |
130 | 논문-국내 | 초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구 | 김종민, 권영화, 박예림, 김동수, 권재현, 김영도 | 한국수자원학회논문집 | 2022-04-01 |
129 | 논문-국외 | A flood-crest forecast prototype for river floods using only in-stream ... | Marian Muste, 김동수, 김경동 | nature - communications earth & environment | 2022-04-01 |
128 | 논문-국내 | 한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기... | 노효섭, 손근수, 김동수, 박용성 | 한국수자원학회논문집 | 2022-01-01 |
» | 논문-국외 | Measurement of suspended sediment concentration in open channel flows b... | 권시윤, 신재현, 서일원 노효섭, 정성현, 유호준 | Advances in Water Resources | 2022-01-01 |
126 | 논문-국내 | 하천정비기본계획 CAD 형식 단면 측량자료 자동 추출 및 하천공간 데이터베... | 김경동, 김동수, 유호준 | 한국수자원학회논문집 | 2021-12-01 |
125 | 논문-국외 | High-Gradient Pattern Image Velocimetry (HGPIV) | 유호준, 김동수, Marian Muste | Advances in Water Resources | 2021-11-20 |
124 | 논문-국외 | Considerations on Acoustic Mapping Velocimetry (AMV) Application for in... | 유호준, Marian Muste, 김동수, Sándor Baranya | Frontiers in Water | 2021-11-04 |
123 | 학술발표회-국외 |
Estimating dispersive behavior using UAV-based spatio-temporal hyperspe...
![]() |
권영화, 한은진, 유호준 김동수, 김영도 | ISEH 2021 | 2021-07-19 |
122 | 학술발표회-국외 |
Bathymetric Observation with UAV-based Hyperspectral Image in Shallow R...
![]() |
유호준, 김동수, 권영화 | ISEH 2021 | 2021-07-19 |
121 | 학술발표회-국외 |
Mixing Characteristics of River Confluence using Water Quality Indicato...
![]() |
손근수, 김동수, 류시완, 김영도 | ISEH 2021 | 2021-07-19 |
120 | 학술발표회-국내 |
하천 합류부 유량비를 활용한 혼합거리 분석 방법 개발
![]() |
손근수, 이경수, 김동수, 류시완, 김영도 | 2021 한국수자원학회 학술발표회 | 2021-06-03 |
119 | 학술발표회-국내 |
표면유속을 활용한 유량산정방법 비교 연구
![]() |
노영신, 김동수, 김서준 | 2021 한국수자원학회 학술발표회 | 2021-06-03 |
118 | 학술발표회-국내 |
초분광영상 기반 안동호 조류발생 특성 분석 연구
![]() |
김광수, 권영화, 김동수, 김영도 | 2021 한국수자원학회 학술발표회 | 2021-06-03 |
117 | 학술발표회-국내 |
자동유량관측소 초음파산란도 활용 지속적 부유사농도 측정 적용 및 고찰
![]() |
손근수, 김동수, 노영신 | 2021 한국수자원학회 학술발표회 | 2021-06-03 |
116 | 학술발표회-국내 |
연속 초음파 영상을 활용한 하상 이동속도 산정 기술 개발
![]() |
유호준, Marian Muste, 김동수 | 2021 한국수자원학회 학술발표회 | 2021-06-03 |